
 1

Open|SpeedShop (O|SS)
Build and Installation Guide

Version 2.4.0
September 30, 2018

Introduction ... 3
What is CBTF and how does it relate to O|SS? .. 3
A new O|SS build method: SPACK ... 4
Some Initial Notes for the install-tool build method .. 4
Prerequisite Packages ... 6

Ubuntu/Debian: ... 6
RedHat/Fedora: ... 7
SLES/SUSE: .. 7

Building from the Release Tarballs (located on
https://www.openspeedshop.org/downloads) .. 9

Installation Information ... 10
Building the new Qt4/Qt5 based O|SS GUI .. 17
Module Files, Dotkits, and softenv files ... 18

Install tool example commands from various systems .. 19
Generic Laptop or Desktop Platform Installation Examples... 19

Build only the krell-root .. 19
Build cbtf components using the krell-root ... 19
Build only OSS using the cbtf components and the krell-root .. 19
Build everything: the krell-root, the cbtf components, and OSS using cbtf instrumentor 19

Cray Platform Install Examples ... 21
Instructions for building O|SS CBTF based versions on Cray platforms .. 21

Building for the compute nodes... 21
Setup up the build environment for building for the compute nodes 21
Build the compute node version of krellroot .. 22
Build the compute node versions of O|SS for the CBTF version .. 23

Building for the front-end or login nodes ... 24
Setup up the build environment for building for the front-end or login nodes 24
Build the front-end node version of krellroot... 24
Build the front-end node versions of cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl 24
Build the front-end node version of O|SS for the CBTF version ... 25

Blue Gene Systems (only offline supported) Install Examples .. 25
Compute node – O|SS collectors and runtimes .. 25

Build O|SS collectors and runtimes without using krell root components 25
Build krell root components for compute node ... 26
Build O|SS collectors and runtimes using krell root components... 26

Front end node – O|SS viewer .. 26
Build O|SS Viewer not using krell root components.. 26
Build krell root components .. 26
Build O|SS viewer using krell root components .. 26

Intel MIC (KNL) Platform Install Examples ... 26
Intel MIC (KNC) Co-Processor Platform Install Examples ... 26

Instructions for building O|SS CBTF based versions on Intel MIC platforms 27
Building for the compute nodes... 27

Setup up the build environment for building for the compute nodes 27
Build the compute node version of krellroot .. 27
Build the compute node versions of cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl 27

 2

Build the compute node versions of O|SS for the CBTF version .. 27
Building for the front-end or login nodes ... 27

Build the front-end node version of krellroot... 27
Build the front-end node versions of cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl 28
Build the front-end node version of O|SS for the CBTF version ... 28

ARM Platform Install Examples .. 29
Instructions for O|SS CBTF based versions on ARM platforms .. 29

Building for the ARM platform ... 29
Setup up the build environment for building for the front-end or login nodes 29
Build the krellroot - components needed to support building cbtf and O|SS 29
Build cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl .. 29
Build O|SS for the CBTF version .. 29

To Run O|SS .. 30
Environment Setup ... 30

OPENSS_PLUGIN_PATH ... 30
LD_LIBRARY_PATH .. 30
DYNINSTAPI_RT_LIB ... 30
OPENSS_MPI_IMPLEMENTATION (for offline mode of operation) .. 30
PATH ... 31
OPENSS_RAWDATA_DIR (offline mode of operation only) .. 31
OPENSS_DB_DIR .. 31

Runtime Environment Examples ... 31
Generic Cluster Module File Example ... 31

O|SS module file example.. 32
Generic Cluster Dotkit File Example .. 33

O|SS dotkit example ... 33
Blue Gene/Q Softenv File Example ... 34

Offline version (no krell root usage) ... 34
Offline version (with krell root usage) ... 35

Cray Platform Module File Example .. 35
Cray platform CBTF version module file example .. 36

Intel MIC Platform Module File Examples .. 37
Intel MIC (KNL) platform CBTF version module file example .. 37
Intel MIC (KNC co-processor) platform CBTF version module file example 37

ARM platform CBTF version module file example .. 38
Power 8 platform CBTF version module file example .. 38

How to use SPACK to build O|SS ... 38
Spack Introduction .. 39
Quick start guides to get started building O|SS with Spack ... 40

Building cbtf, cbtf-krell, and openspeedshop using spack .. 40
Building the cbtf-argonavis-gui (new Qt4/Qt5 GUI) using spack ... 41

Example usage following quick start guide commands .. 41
Getting the latest spack sources, i.e. the development branch and updating to the latest
source. ... 43
Details about O|SS specific spack options .. 44

What components are supported ... 44
Component Variants Explained ... 44

Module file creation is automatic ... 45
Restricted network access solution .. 45

 3

Introduction

This document supports the Open|SpeedShop (O|SS) 2.4 release and subsequent
updates.

A new and preferred method of building and installing O|SS on laptops, desktops, and
clusters using the spack build/package manager is now available. Please see the
Spack Build and Install guider for more information. There is also a section (How to
use SPACK to build O|SS) on building with Spack below. However, if that method
does not work for your needs, this document describes the native install methods that
have been used to build O|SS for some time now.

O|SS release 2.4 comes with an install script (install-tool) that will build all the
supporting components (also referred to as the krellroot) and O|SS itself, in one step.
Or the builder can invoke the script once to build the supporting component set
(krellroot) and another time to build O|SS.

The install script relies on arguments to the script instead of environment variables
like the previous install script (install.sh). With install-tool, the environment
variables are set internally to the script so that the builder is not required to keep
track of the numerous build environment variables that O|SS uses. In addition, more
build environment variables are set by default, requiring less builder-required action.

The new install script also supports building the Component Based Tool Framework
(CBTF) for the new O|SS CBTF instrumentor version that is described below.

What is CBTF and how does it relate to O|SS?

CBTF stands for Component Based Tool Framework and is a key scalability feature
for the new version of O|SS that uses CBTF as its instrumentation methodology. The
O|SS team has completed the base functionality for the process of changing the
mechanisms that gather the performance data and transfer the performance data
from the application, where it was gathered, to the O|SS client where it is stored into
an SQLite database file. In order for O|SS to operate efficiently at high rank and
thread counts it could not continue to write raw data files to disk and then read
them up at the end of the application execution. This is a bottleneck, which is too
time-consuming at high processor counts. So, CBTF version of O|SS using the new
CBTF gathering and transfer mechanisms which transmit raw performance data to
the client tool without writing files. This will be significantly faster than the offline
version. CBTF can also be used independently from O|SS to rapidly prototype tools.
Please see the CBTF wiki at: https://github.com/OpenSpeedShop/cbtf/wiki for
more information.

https://github.com/OpenSpeedShop/cbtf/wiki

 4

A new O|SS build method: SPACK

General information about the spack build/package manager can be found at:
https://github.com/spack/spack/wiki. Spack is a flexible package manager for HPC.
It is intended to let you build for many combinations of compiler, architectures,
dependency libraries, and build configurations, all with a friendly, intuitive user
interface. Spack draws some ideas from Homebrew and Nix, with its own pure
Python package format, extensive internal support for managing software
dependency graphs, and powerful command line syntax.
The O|SS team has been working on creating spack package files for building O|SS
under the spack build system. The O|SS build under spack is generally working for
builds on clusters and pc/laptop type systems. Cray support is not ready yet.

Once spack is downloaded and set up, to build O|SS can be as easy as this command:
 spack install openspeedshop

See the spack section “How to use SPACK to build O|SS” below for more specific
information.

Some Initial Notes for the install-tool build method

 NOTE: with version 2.3.1(and beyond) the O|SS build will build a cmake
version that works to build our software (version 3.2.2). This cmake will be
used whenever the install-tool is invoked. In addition to some of the open
source components using the “cmake” build tools to build their components,
the O|SS team is now using cmake as the build tool for O|SS, and the CBTF
components that the team supplies. So, cmake is now a build pre-requisite
package.

 NOTE: If you have install-tool build scripts, for version 2.2 and 2.3, please
replace “--build-cbtf” with “--build-cbtf-all”, as we are now using cmake as
our underlying build tool instead of GNU autotools. With cmake we are
building cbtf, cbtf-krell, cbtf-argonavis, and cbtf-lanl separately. When the
GNU autotools were used we built all of the CBTF components within one
build. Now the CBTF components are individually built (four separate builds)
when “--build-cbtf-all” is used.

 Caution: boost-1.60 to 1.62 versions cause compile errors when building
the cbtf components and the new cuda GUI. These are known boost
problems. Please use a different version of boost (1.66 and above) when
building O|SS.

 Caution: When installing a new version, please install into an
empty/clean directory, as we do not clean the install directories out upon
install-tool invocation. You have end up with multiple copies of the same
component, which can lead to execution issues.

 We refer to root or krell-root packages or building the krell-root. What does
this mean? These are the external packages that O|SS and/or CBTF uses as

https://github.com/spack/spack/wiki
http://brew.sh/
http://nixos.org/

 5

part of the tool. Sometimes one or several of these external packages are not
available on the platform that O|SS and/or CBTF is being installed on, so we
have provided the ability to build and install them. The root/external
packages are provided as a convenience. You could install these packages
without the use of the krell-root on the install system, if desired.

 The CBTF version of O|SS is now the default and official version of O|SS, as of
the 2.3 release. The offline version is now legacy, but the offline capabilities
have been built into the CBTF version and is usable on most platforms (not
Blue Gene systems).

 You can install O|SS in non-standard locations (root permission is not needed)
 Versions of O|SS 2.3 and beyond can be installed using the information in this

document.
 NOTE: O|SS is normally built with the GNU compilers, but now building

with the Intel compiler is supported. Options to the install-tool have
been created to allow building with either the gnu or intel compilers.
Using the gnu compiler is the default.

o --build-compiler gnu
o --build-compiler intel

 O|SS cannot be built with PGI, Cray, or other compilers. Even though O|SS only
builds with GNU or Intel compilers, O|SS supports performance analysis of
applications built with a wide variety of compilers, including GNU, Intel, PGI,
Pathscale, and Cray.

 There are a number of development environment packages that are required
if you are starting from a clean install on your desktop or laptop. See the
Prerequisite Packages section for the list of packages needed on non-
development systems. Most laboratory systems normally have all the
required packages installed, because most tools need these packages to build
and execute successfully.

 There is now an option to build the krell root components that might be
missing on the system or needed separately from O|SS. The builder can build
the krell root then use that installation to build CBTF and/or O|SS. Or, you can
choose to build all components into the same install directory.

 The install-tool script supports building both O|SS modes of execution:
o cbtf – Performance information is transported from the application

across a TCP/IP network as it is collected and stored in the O|SS
database on the fly.

o NOW LEGACY: offline – Write raw performance information to shared
file system disk files while the application is executing. Then convert
the raw data files to an O|SS database file when the application
completes execution.

 install-tool script options for building O|SS are listed and described below:
o To build the new CBTF version use three invocations of the install-tool

script individually, in the order listed.
 “--build-krell-root”
 “--build-cbtf-all”

 6

 “--build-oss”
o NOW LEGACY: To build the offline version use two invocations of the

install-tool script individually, in the order listed.
 “--build-krell-root”
 “--build-offline”

 The examples below are for illustration and will need adjustment based on the

software installations on your particular system.
 On systems with heterogeneous front-end and compute node processor sets,

multiple install-tool invocations are required. Examples of these types of
systems are the BG/Q, some Cray systems, or on any other systems where
targeted builds are needed. We suggest a separate set of builds, one set for the
front-end viewer tool build and another set of builds for the compute node
runtimes and performance data collectors build.
o For building the collectors and runtimes that execute on the compute node:

 “--build-krell-root” using --target-arch=<platform>
 “--build-cbtf-all” using --target-arch=<platform>

o NOW LEGACY: For building the client tool that runs on the front-end node:
 “--build-krell-root”
 “--build-offline”

o Note: It appears that some systems with heterogeneous front-end versus

compute node processor types default to the compute node compilers.
Most of our instructions assume the default compilers are front-end
compilers. Putting “CXX=g++” and “CC=gcc” in front of the install-tool
command when building the front-end version of O|SS may get around this
issue on platforms where the defaults are not what we expected (defaults
to compute node compiler version).

 Note: In the openspeedshop-release-2.4 subdirectory “startup_files”
there are several install-tool build scripts that have been used to build
O|SS on several platforms. These are available to use as a guide for
installs on other new platforms.

Prerequisite Packages

There are some prerequisite packages that are necessary for building and running
the O|SS performance tool. Most will be present on a system that is used for
debugging and performance analysis. This is true of most national laboratory
clusters, Cray, and Blue Gene platforms. However, if you are installing on machines
without the necessary tool supporting packages installed then this section might be
helpful.

Ubuntu/Debian:

 7

It is necessary to apply these packages to the base system installation, if they are not
already installed, in order to successfully build O|SS and the external tool specific
packages required by O|SS. Example required packages based on Ubuntu 16.04
install.

Packages to aid in development:

sudo apt-get install git cmake cvs
Packages to aid in downloading and building:

sudo apt-get install flex bison libxml2-dev python-dev g++ make patch
environment-modules libz-dev binutils-dev libdwarf-dev libelf-dev

Packages that install-tool will build if you don’t have them installed: (but makes
build shorter if these are installed)

sudo apt-get install automake autoconf libtool m4 libltdl-dev(--build-
autotools)
sudo apt-get install binutils binutils-dev (--build-binutils)
sudo apt-get install libelf1 elfutils libelf-dev (--build-libelf)
sudo apt-get install sqlite3 (--build-sqlite)
If the package: qt3-apps-dev is available use it, if not, you may need these
(libx11-dev libxext-dev) instead.

RedHat/Fedora:

It is necessary to apply a list of supporting packages to the base system installation,
if they are not already installed, in order to successfully build O|SS and the external
tool specific packages required by O|SS. This list is somewhat variable depending
on what was installed during the initial installation and prior to attempting to install
O|SS. Previous experiences have resulted in this list of candidate packages:

 yum install -y rpm-build \
 gcc gcc-c++ \
 openmpi \
 patch \
 autoconf automake \
 elfutils-libelf elfutils-libelf-devel \
 libxml2 libxml2-devel \
 binutils binutils-devel \
 python python-devel \
 flex bison bison-devel bison-runtime \
 libtool libtool-ltdl libtool-ltdl-devel cmake git

SLES/SUSE:

It is necessary to apply these packages to the base system installation, if they are not
already installed, in order to successfully build O|SS and the external tool specific
packages required by O|SS.

 8

Packages to aid in development:

Modules git
Packages to aid in downloading and building:

flex bison rpm libxml2 libxml2-dev python-dev g++ make patch cmake
Packages that install-tool will build if you don’t have them installed: (but makes the
build shorter if these are installed)

qt3 qt3-devel

If your system was installed with any development package group, then the need for
extra package installs may be reduced significantly.

Using the install-tool that comes with the O|SS release will install many of the key
open source tool related components, but the above mentioned system components
are required to be installed by the system administrator.

 9

Building from the Release Tarballs (located on https://www.openspeedshop.org/downloads)

The release top-level directory contains the install script (install-tool) that is
intended to make the build and installation of the external tool support components
(known as the krell root) that are needed to support O|SS and O|SS itself easier.

Because O|SS depends on components that are highly dependent on operating
system interfaces and libraries, it is difficult to produce executable rpms for every
installation platform. This is the reason why we offer the source build installation
instead of rpms.

 10

Installation Information

Please gunzip and untar the openspeedshop-release-2.4.0 tar.gz file and change
directory into the openspeedshop-release-2.4 directory.

For example:

tar -xzvf openspeedshop-release-2.4.0.tar.gz
cd openspeedshop-release-2.4

Inside the top-level release directory is the key script, install-tool that can be used in
building the O|SS performance tool.

The script, install-tool has a help option:

“install-tool –-help“
That can provide information about the possible options a builder of O|SS could use.

The typical build for O|SS is done with an install line something like this:

./install-tool --build-krell-root
--krell-root-prefix /opt/krellroot_v2.4.0
--with-openmpi /opt/openmpi-1.8.2

./install-tool --build-cbtf-all

--cbtf-prefix /opt/cbtf_v2.4.0
--krell-root-prefix /opt/krellroot_v2.4.0
--with-openmpi /opt/openmpi-1.8.2

./install-tool --build-oss
--openss-prefix /opt/osscbtf_v2.4.0
--cbtf-prefix /opt/cbtf_v2.4.0
--krell-root-prefix /opt/krellroot_v2.4.0
--with-openmpi /opt/openmpi-1.8.2

The first install line above builds all the external (krell root) packages that O|SS
needs and installs them in /opt/krellroot_v2.4.0. The second install line above uses
those external packages to build the Component Based Tool Framework (CBTF). It
also uses the openmpi MPI implementation to build the O|SS MPI experiment
collectors. The third install line uses both the external packages built by the krell
root install line and the cbtf package built by the cbtf-all install line to build the O|SS
client tools.

Hint:
To get the paths for the "--with-mpt" or other mpi or other “--with” option clauses is to:
 1) module load mpi-sgi/mpt.2.12r26
 2) echo $LD_LIBRARY_PATH
 3) Look for the MPT path (up to the "/lib" and use that in the "--with-mpt" clause in the install-tool
command.

 11

Example: echo $LD_LIBRARY_PATH
/nasa/sgi/mpt/2.12r26/lib:/home4/jgalarow/python_root/lib

Use this --with-mpt clause: “--with-mpt /nasa/sgi/mpt/2.12r26”

However, on some platforms the typical build install line is not adequate. Platforms
like the Cray and Blue Gene requires more options to the install-tool script. If you
are familiar with the previous install.sh script method of building O|SS, in that build
scenario extra environment variables needed to be set. With install-tool, we need
additional arguments to the script to specify things like the target platform, so there
is a --target-arch <target> option available in the install-tool script. For example, to
build on a Cray system, this is an example build line:

./install-tool --build-krell-root –target-arch cray
--krell-root-prefix /tmp/work/<userid>/krellroot_v2.4.0
--with-boost <boost install directory>
--with-mpich2 /opt/cray/mpt/default/gni/mpich2-gnu/47

./install-tool --build-cbtf-all –target-arch cray

--cbtf-prefix /tmp/work/<userid>/cbtf_v2.4.0
--krell-root-prefix /tmp/work/<userid>/krellroot_v2.4.0
--with-mpich2 /opt/cray/mpt/default/gni/mpich2-gnu/47

./install-tool --build-oss –target-arch cray

--openss-prefix /tmp/work/<userid>/osscbtf_v2.4.0
--krell-root-prefix /tmp/work/<userid>/krellroot_v2.4.0
--with-boost <boost install directory>
--with-mpich /opt/cray/mpt/default/gni/mpich2-gnu/47

One can specify their own versions of the components needed by O|SS to build
properly or you can rely on the defaults that are installed on the system and used
automatically by the build script. If the default system installed component is
determined to be not adequate for the O|SS build (missing development headers)
then the install script will build a version of that component into the externals/root
directory. If the builder has a specific version of a component, such as, PAPI, they
may use the “--with-papi” option to specify the path to that installation and O|SS will
be built using that installation of PAPI.

One can also build individual components and specify the location to place the
component. Here is the “install-tool --help” output:
$
$./install-tool --help
usage: ./install-tool [option]

--help, -h
 This help text.

Introduction:

 12

 This install script can be used to build the krell externals package (--build-krell-root),
 the CBTF components and libraries (--build-cbtf-all), and/or the default version of
OpenSpeedShop
 which now contains both the offline mode of operation and the cbtf mode of operation
with
 the: (--build-oss) install-tool option.

 Typical usages examples are followed by the option descriptions. More examples and
explanations
 can be found in the Build and Install Guides for CBTF and Open|SpeedShop.

Typical usage example for cluster/PC build:
 # Build only the krell-root
 ./install-tool --build-krell-root
 --krell-root-prefix /opt/krellroot_v2.4.0
 --with-openmpi /opt/openmpi-1.8.2

 # Build cbtf components using the krell-root
 ./install-tool --build-cbtf-all
 --cbtf-prefix /opt/cbtf_v2.4.0
 --krell-root-prefix /opt/krellroot_v2.4.0
 --with-openmpi /opt/openmpi-1.8.2
 --with-cupti /usr/local/cuda-8.0/extras/CUPTI
 --with-cuda /usr/local/cuda-8.0

 # Build only OSS using the cbtf components and the krell-root
 ./install-tool --build-oss
 --cbtf-prefix /opt/cbtf_v2.4.0
 --krell-root-prefix /opt/krellroot_v2.4.0
 --openss-prefix /opt/osscbtf_v2.4.0
 --with-openmpi /opt/openmpi-1.8.2
 --with-cupti /usr/local/cuda-8.0/extras/CUPTI
 --with-cuda /usr/local/cuda-8.0

Typical in one command usage example for cluster/PC build:

 # Build the krell-root, the cbtf components, and OSS using cbtf instrumentor
 ./install-tool --build-all
 --cbtf-prefix /opt/cbtf_v2.4.0
 --krell-root-prefix /opt/krellroot_v2.4.0
 --openss-prefix /opt/osscbtf_v2.4.0
 --with-openmpi /opt/openmpi-1.8.2

Typical example for building the new Qt4/Qt5 GUI tool/interface:

 # Build graphviz for support of building the new cbtf-argonavis-gui
 ./install-tool --build-graphviz
 --krell-root-prefix /opt/graphviz-2.40.1

 # Build QtGraph for support of building the new cbtf-argonavis-gui, uses graphviz

 13

 ./install-tool --build-QtGraph
 --krell-root-prefix /opt/QtGraph-1.0.0
 --with-graphviz /opt/graphviz-2.40.1
 --with-qt /usr/lib64/qt5

 # Build new cbtf-argonavis-gui, uses graphviz and QtGraph (installs into
/opt/osscbtf_v2.4.0)
 ./install-tool --build-cbtfargonavisgui
 --with-openss /opt/osscbtf_v2.4.0
 --with-cbtf /opt/cbtf_v2.4.0
 --krell-root-prefix /opt/krellroot_v2.4.0
 --with-graphviz /opt/graphviz-2.40.1
 --with-QtGraph /opt/QtGraph-1.0.0
 --with-boost /opt/boost-1.53.0
 --with-qt /usr/lib64/qt5

Option Descriptions:

--krell-root-prefix <directory>
 Where <directory> is the location to install the components
 needed for building CBTF and OpenSpeedShop
 and it's supporting tools and libraries. The default
 is /opt/KRELLROOT. It is not recommended to use /usr.
 NOTE: This option will override any setting for
 the environment variable KRELL_ROOT_PREFIX.

 NOTE: This prefix should be used as the install path
 when building a specific component (for example:
 install-tool --build-libelf --krell-root-prefix /opt/libelf-0.8.13

--cbtf-prefix <directory>
 Where <directory> is the location to install CBTF
 and it's supporting tools and libraries. The default
 is /opt/CBTF. It is not recommended to use /usr.
 NOTE: This option will override any setting for
 the environment variable CBTF_PREFIX.

--openss-prefix <directory>
 Where <directory> is the location to install OpenSpeedShop
 and it's supporting tools and libraries. The default
 is /opt/OSS. It is not recommended to use /usr.
 NOTE: This option will override any setting for
 the environment variable OPENSS_PREFIX.

--build-all
 Build the krell-root, cbtf components, and openspeedshop
 The cbtf-prefix, krell-root-prefix, and the openss-prefix must be specified

--build-cbtf-all
 Build only the cbtf components using the existing krell-root

 14

 The krell-root-prefix and cbtf-install-prefix must be specified

--build-krell-root
 Build only the krell-root. The krell-root-prefix must be specified

--build-onlyosscbtf)
 Build only the OpenSpeedShop component for the cbtf instrumentor
 using the cbtf and krell-root components.

 Specify a target architecture
--target-arch <target>
 Where acceptable target values are: cray-xk, cray-xe, bgp, bgq, bgqfe

 Specify the compiler to be used for the build, gnu is default
--build-compiler {gnu, intel}

 Use these MPI installations when building
--with-mpich <directory>
--with-mpich2 <directory>
--with-mpich2-driver <driver name>
--with-mvapich <directory>
--with-mvapich2 <directory>
--with-mvapich2-driver <driver name>
--with-openmpi <directory>
--with-mpt <directory>
 Where <directory> is the installed path to the mpi implementation
 to use for MPI support.

 Build only the component specified by the build clause.
 The krell-root-prefix must be specified and components will
 be installed into that krell-root-prefix specified directory path.
--build-autotools
--build-bison
--build-boost
--build-xercesc
--build-binutils
--build-flex
--build-dyninst
--build-elfutils
--build-GOTCHA
--build-libelf
--build-libdwarf
--build-libmonitor
--build-libunwind
--build-llvm-openmp
--build-mrnet
--build-ompt
--build-papi
--build-python
--build-sqlite

 15

--build-symtabapi
--build-cmake
--build-ptgf
--build-ptgfossgui
--build-qcustomplot
--build-graphviz
--build-QtGraph
--build-qt3
--build-vampirtrace
 Build the experimental CUDA focused GUI Qt4/Qt5
--build-cbtfargonavisgui

 Enable certain configuration options
--enable-bfd-symbol-resolution|--enable-bfd
--enable-debug

 Force these components to be built and installed into the krellroot
 or OSS install directories.
--force-binutils-build
--force-boost-build
--force-cmake-build
--force-dyninst-build
--force-libelf-build
--force-libdwarf-build
--force-libunwind-build
--force-papi-build
--force-qt3-build
--force-sqlite-build
--force-xercesc-build
--force-ompt-build
 Build all of the above by force
--force-all

--skip-binutils-build
--skip-boost-build
--skip-cmake-build
--skip-dyninst-build
--skip-libdwarf-build
--skip-libelf-build
--skip-libunwind-build
--skip-mrnet-build
--skip-ompt-build
--skip-papi-build
--skip-qt3-build
--skip-sqlite-build
--skip-symtabapi-build
--skip-vampirtrace-build
--skip-xercesc-build

 16

 Use these non-root or alternative components when building
--with-binutils <directory>
--with-boost <directory>
--with-dyninst <directory>
--with-expat <directory>
--with-graphviz <directory>
--with-libelf <directory>
--with-libdwarf <directory>
--with-libmonitor <directory>
--with-libunwind <directory>
--with-mrnet <directory>
--with-papi <directory>
--with-python <directory>
--with-python-vers <version number>
--with-qt <directory>
--with-qt3 <directory>
--with-sqlite <directory>
--with-symtabapi <directory>
--with-xercesc <directory>
--with-otf <directory>
--with-QtGraph <directory>
--with-vt <directory>
--with-zlib <directory>
 Where <directory> is the installed path to the alternative component.

 Use these non-root or alternative compute node components when building a cbtf-krell fe
 that points to targeted runtimes (cray, mic platforms)
--with-cn-cbtf <directory>
--with-cn-cbtf-krell <directory>
--with-cn-binutils <directory>
--with-cn-dyninst <directory>
--with-cn-libelf <directory>
--with-cn-libdwarf <directory>
--with-cn-libmonitor <directory>
--with-cn-libunwind <directory>
--with-cn-mrnet <directory>
--with-cn-symtabapi <directory>
--with-cn-xercesc <directory>
--with-cn-papi <directory>
--with-cn-boost <directory>
 Where <directory> is the installed path to the alternative component.

--with-tls < explicit | implicit >
 where the default is implicit

Optional install-tool arguments are needed for configuring O|SS for MPI
experiments. If the installation of O|SS is intended to support running MPI specific
O|SS experiments, then one or more MPI implementation arguments must be
specified. The O|SS install-tool script will build MPI experiment collectors for one

 17

or more of these MPI implementations by specifying one or more of the “--with-
<mpi implementation> arguments:

For openMPI:
 --with-openmpi <openmpi install path>
For mpich:
--with-mpich <mpich install path>
For mpich2:
--with-mpich2 <mpich2 install path>
For SGI mpt1:
--with-mpt <mpt install path>
For mvapich
--with-mvapich <mvapich install path>
For mvapich2:
--with-mvapich2 <mvapich2 install path>

If none of the above arguments are not specified, every non-MPI specific O|SS
experiments will be built and execute properly, but the mpi, mpit, mpiotf
experiments will not be built. The MPI implementation arguments are not
necessary to run pcsamp, usertime, hwc, io, or fpe and variants of those
experiments, even on MPI applications. They are only needed for mpi, mpip, and
mpit experiment creation because the tool needs to know the MPI data structure
definitions to process MPI performance data.

The install-tool script and the O|SS configuration code will operate on those MPI
arguments and will configure O|SS to recognize these MPI implementations. When
the MPI specific argument collectors are built and installed, users will have the
ability to create MPI experiments (mpi, mpip, mpit) and gather performance data
for MPI applications built with those specific MPI implementations.

Building the new Qt4/Qt5 based O|SS GUI

There is a new graphical user interface being developed whose initial focus was on
the cuda experiment. However, support for all experiments is being added and
covers all of the O|SS experiments now. To build this somewhat experimental, but
useful tool use the following install-tool command line format:
 ./install-tool --build-cbtfargonavisgui
 --with-openss <path to the O|SS client installation>
 --with-cbtf <path to the CBTF installation>
 --krell-root-prefix <path to the krell root externals installation>
 --with-graphviz <path to graphviz installation directory>
 --with-QtGraph <path to QtGraph installation directory>
 --with-boost <path to boost installation directory>

1 MPT is transitioning to MPI-3 support but it is not completed. Please use MPT-2.08 and above when building the MPI
collectors. We have added special code to support their implementation of mpi.h MPI Function specifications with our

wrappers.

 18

 --with-qt <path to qt4 or qt5 installation directory>

For example:

./install-tool --build-cbtfargonavisgui
 --with-openss /opt/OSS/osscbtf_v2.4.0
 --with-cbtf /opt/OSS/cbtf_v2.4.0
 --krell-root-prefix /opt/OSS/krellroot_v2.4.0
 --with-graphviz /opt/OSS/graphviz-2.40.1
 --with-QtGraph /opt/OSS/QtGraph-1.0.0
 --with-boost /opt/boost-1.53_0
 --with-qt /usr/lib64/qt4

See the O|SS reference/users guide for information on how to use the new graphical
user interface. The new GUI command is: openss-gui, while the existing GUI’s
command is: openss.

If graphviz is not on installed on the system, this install-tool command can be used
to build and install graphviz. For example:
 ./install-tool --build-graphviz --krell-root-prefix /opt/OSS/graphviz-2.40.1

QtGraph is a component of the new Qt4/Qt5 GUI and also needs to be installed
manually at this time. The install-tool line to install QtGraph is as follows:

./install-tool --build-QtGraph --krell-root-prefix /opt/OSS/QtGraph-1.0.0 --with-graphviz
/opt/OSS/graphviz-2.40.1 --with-qt /usr/lib64/qt4

Module Files, Dotkits, and softenv files

On most systems, a module file, dotkit file, or softenv file must be created after O|SS
is built and that file is then activated/loaded prior to running O|SS. There are
examples of each in the Runtime Environment Examples section below.

 19

Install tool example commands from various systems

These examples show optional ways of building the default version of O|SS. The
krell root components, the cbtf components, and the O|SS client components are
installed into separate install directories allowing the ability to update each
individually. One can use the “--build-all” option allows all the pieces to be built
with one command where all the install locations are specified. The “--krell-root-
prefix”, “--cbtf-prefix”, and “--openss-prefix” options must be specified, so that the
build script knows where to install the separate components. Or you can pass the
same install prefix for all of the three prefix options.

Generic Laptop or Desktop Platform Installation Examples

Please load the cmake module file or have cmake installed, as it is required for
building some root components as well as O|SS and the CBTF components (named
cbtf, cbtf-krell, cbtf-argonavis, and cbtf-lanl).

Build only the krell-root

./install-tool --build-krell-root

--krell-root-prefix /opt/krellroot_v2.4.0
--with-openmpi /opt/openmpi-1.8.2

Build cbtf components using the krell-root

./install-tool --build-cbtf-all

--cbtf-prefix /opt/cbtf_only_v2.4.0
--krell-root-prefix /opt/krellroot_v2.4.0
--with-openmpi /opt/openmpi-1.8.2
--with-cupti /usr/local/cuda-6.5/extras/CUPTI
--with-cuda /usr/local/cuda-6.5

Build only OSS using the cbtf components and the krell-root

./install-tool --build-oss

--cbtf-prefix /opt/cbtf_only_v2.4.0
--krell-root-prefix /opt/krellroot_v2.4.0
--openss-prefix /opt/osscbtf_v2.4.0
--with-openmpi /opt/openmpi-1.8.2
--with-cupti /usr/local/cuda-6.5/extras/CUPTI
--with-cuda /usr/local/cuda-6.5

Build everything: the krell-root, the cbtf components, and OSS using cbtf instrumentor

./install-tool --build-all

--cbtf-prefix /opt/cbtf_only_v2.4.0
--krell-root-prefix /opt/krellroot_v2.4.0

 20

--openss-prefix /opt/osscbtf_v2.4.0
--with-openmpi /opt/openmpi-1.8.2

 21

Cray Platform Install Examples

Depending on what the default programming environment setting is, you must swap
the PrgEnv-cray or PrgEnv-pgi environment module to PrgEnv-gnu. If you are
building for CUDA, then you will have to load the cudatoolkit module file. The
cmake tool is also required by the cbtf build and is not loaded by default on many
Cray systems. A possible module load/swap scenario prior to invoking the install-
tool scripts is as follows:

module swap PrgEnv-pgi PrgEnv-gnu
module load cudatoolkit
module load cmake

Instructions for building O|SS CBTF based versions on Cray platforms

We have moved to a multi-step process for building on platforms where the front-
end node and the compute nodes are running different processor sets. By building
the compute node O|SS and components with the compilers suggested for running
on the compute nodes and by building the front-end node O|SS and components we
are able to optimally support the Cray platform.

The high level view is to first build for the compute nodes by building the
components needed by O|SS and CBTF (krellroot), then build the CBTF components,
and finally build O|SS. After the component node versions are built, then we do a
similar set of builds for the front-end components and O|SS and CBTF clients.

Building for the compute nodes

This must be done first because we pass the O|SS and CBTF compute node
installation directories as arguments to the front-end install-tool build commands.

Setup up the build environment for building for the compute nodes

Note: that this is an example set of module settings. Newer or older versions of
Cray software may require alternative module files to be loaded or unloaded. This
is an example from the DOD Cray platform Gordon. It follows closely with most Cray
type builds, although there are differences on the versions that are used on a
particular system.

Also, note: there is a new interface that appears to be replacing the ALPS package
and aprun as the default way to launch applications on the Cray. The CTI interface
allows for launching application via native SLURM srun. On systems where the CTI
interface is being use, please use the install-tool --use-cti install-tool option and do
not pass the –-with-alps option.

 22

Another note: Some Cray systems do not install expat-static package which. causes
the MRNet package build to fail. In order to resolve this issue, we added the expat
tarball to the external packages in the SOURCES directory. To build this into the
krellroot, use: install-tool --build-expat --krell-root-prefix <install location>. Then
add --with-expat to the install-tool --build-krell-root command line to resolve this
issue.

module unload PrgEnv-pgi PrgEnv-cray PrgEnv-intel
module load PrgEnv-gnu
module unload gcc; module load gcc/4.9.3
export SYSROOT_DIR=/opt/cray/xc-sysroot/default
module load cmake-3.2.2

BASE_IDIR=/p/home/app/PET/pkgs/openss
TOOL_VERS="_v2.4.0.beta1"
KROOT_IDIR=${BASE_IDIR}/krellroot${TOOL_VERS}
CBTF_IDIR=${BASE_IDIR}/cbtf${TOOL_VERS}
OSSCBTF_IDIR=${BASE_IDIR}/osscbtf${TOOL_VERS}
OSSOFF_IDIR=${BASE_IDIR}/ossoff${TOOL_VERS}
PAPI_IDIR=/opt/cray/papi/default
MPICH_IDIR=/opt/cray/mpt/7.3.2/gni/mpich-gnu/5.1
ALPS_IDIR=/opt/cray/alps/default

 export cc=gcc
 export CC=gcc
 export CXX=g++

Build the compute node versions of cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl

Build root components runtime only
./install-tool --runtime-only
 --target-arch cray --target-shared
 --build-krell-root --krell-root-prefix ${KROOT_IDIR}/compute
 --with-mpich ${MPICH_IDIR}
 --with-papi ${PAPI_IDIR}
 --with-alps ${ALPS_IDIR}

./install-tool --build-cbtf-all --runtime-only
 --target-arch cray --target-shared
 --cbtf-prefix ${CBTF_IDIR}/compute
 --krell-root-prefix ${KROOT_IDIR}/compute
 --with-mpich ${MPICH_IDIR}
 --with-papi ${PAPI_IDIR}

Build the compute node version of krellroot
./install-tool --build-krell-root

--runtime-only
--target-arch cray
--target-shared
--krell-root-prefix /home/jgalaro/krellroot_stable/compute
--with-papi /opt/cray/papi/5.3.1

 23

./install-tool --build-cbtf-all

--runtime-only
--target-arch cray
--target-shared
--cbtf-prefix /home/jgalaro/cbtf_only_stable/compute
--krell-root-prefix /home/jgalaro/krellroot_stable/compute
--with-mpich2 /opt/cray/mpt/7.0.1/gni/mpich2-gnu/48
--with-papi /opt/cray/papi/5.3.1
--with-dyninst /home/jgalaro/compute/dyninst-9.0.0_gcc

Build the compute node versions of O|SS for the CBTF version
Note: There is nothing to build, as this version uses the CBTF compute node
components for gathering the data. Those were built in the --build-cbtf-all install-
tool build command.

NOTE:

Because the default GNU compilers are too old on some Cray platforms and if we
build with the default compilers some of the necessary software components will
fail to build. If we can build with the default GNU compilers, then this isn't an issue.
No copy or LD_LIBRARY_PATH setup needed.

If a newer compiler was loaded via a module file in order to build the tool, then after
building everything you have to copy the libstdc++.so.6 from the compiler directory
(because it is not available on the compute nodes) into the compute node install
directory (krellroot/lib64, for example) or setup LD_LIBRARY_PATH to point to that
location.

Here is an example of how it could be done.

> module list
Currently Loaded Modulefiles:
 1) modules/3.2.6.7 2) eswrap/1.0.8 3) cray-mpich/7.0.1 4) cmake-3.2.2
5) gcc/4.8.2

> which gcc
/opt/gcc/4.8.2/bin/gcc

> lsr /opt/gcc/4.8.2//snos/lib64/libstdc++.so.6
0 lrwxrwxrwx 1 root root 19 Aug 8 2014 /opt/gcc/4.8.2//snos/lib64/libstdc++.so.6
-> libstdc++.so.6.0.18

 24

Building for the front-end or login nodes

Setup up the build environment for building for the front-end or login nodes

 module unload PrgEnv-pgi PrgEnv-gnu PrgEnv-cray PrgEnv-intel
 module unload craype-network-gemini craype-mc8
 module load cmake-3.2.2
 module load gcc
 export CXX=g++
 export cc=gcc

Build the front-end node version of krellroot
./install-tool --build-krell-root

--krell-root-prefix /home/jgalaro/krellroot_stable
--with-papi /opt/cray/papi/5.3.1
--with-alps /opt/cray/xe-sysroot/default/usr
--with-mpich2 /opt/cray/mpt/7.0.1/gni/mpich2-gnu/48

Build the front-end node versions of cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl
Note: The --with-cn-<component> lines have compute node installations as their
arguments. We are pointing the front-end build to the compute node runtime
libraries in order to run the properly built compute node versions of the runtime
libraries.

./install-tool --build-cbtf-all

--runtime-target-arch cray
--cbtf-prefix /home/jgalaro/cbtf_only_stable
--krell-root-prefix /home/jgalaro/krellroot_stable
--with-mpich2 /opt/cray/mpt/7.0.1/gni/mpich2-gnu/48
--with-cn-boost /home/jgalaro/krellroot_stable/compute
--with-cn-mrnet /home/jgalaro/krellroot_stable/compute
--with-cn-xercesc /home/jgalaro/krellroot_stable/compute
--with-cn-libmonitor /home/jgalaro/krellroot_stable/compute
--with-cn-libunwind /home/jgalaro/krellroot_stable/compute
--with-cn-dyninst /home/jgalaro/compute/dyninst-9.0.0_gcc
--with-cn-papi /opt/cray/papi/5.3.1
--with-cn-cbtf-krell /home/jgalaro/cbtf_only_stable/compute
--with-cn-cbtf /home/jgalaro/cbtf_only_stable/compute
--with-binutils /home/jgalaro/krellroot_stable
--with-boost /home/jgalaro/krellroot_stable
--with-mrnet /home/jgalaro/krellroot_stable
--with-xercesc /home/jgalaro/krellroot_stable
--with-libmonitor /home/jgalaro/krellroot_stable
--with-libunwind /home/jgalaro/krellroot_stable

 25

--with-dyninst /home/jgalaro/krellroot_stable
--with-papi /opt/cray/papi/5.3.1

Build the front-end node version of O|SS for the CBTF version
./install-tool --target-arch cray

--build-oss
--openss-prefix /home/jgalaro/osscbtf_stable
--with-cn-cbtf-krell /home/jgalaro/cbtf_only_stable/compute
--krell-root-prefix /home/jgalaro/krellroot_stable
--with-mpich2 /opt/cray/mpt/7.0.1/gni/mpich2-gnu/48
--with-papi /opt/cray/papi/5.3.1
--with-boost /home/jgalaro/krellroot_stable
--with-mrnet /home/jgalaro/krellroot_stable
--with-xercesc /home/jgalaro/krellroot_stable
--with-libmonitor /home/jgalaro/krellroot_stable
--with-libunwind /home/jgalaro/krellroot_stable
--with-dyninst /home/jgalaro/krellroot_stable
--with-libelf /home/jgalaro/krellroot_stable
--with-libdwarf /home/jgalaro/krellroot_stable
--with-binutils /home/jgalaro/krellroot_stable
--cbtf-prefix /home/jgalaro/cbtf_only_stable

Blue Gene Systems (only offline supported) Install Examples

For the Blue Gene systems, it is still a two-step process to build the offline version of
O|SS. First build the compute node collectors and runtimes that run on the compute
nodes. Note that the compute note installation paths have a “bgq” sub-directory
appended to the viewer installation path by convention, not necessity. The location
must be different than that of the viewer installation as not to clobber the viewer
installation. The builder is responsible for keeping the two installations separate.
Next build the O|SS viewer that runs on the front-end node, giving this build the –
with-runtime-dir that points to the O|SS compute node install directory. That way
the front-end knows where the compute node collectors and runtime libraries are
located.

For the Blue Gene builds, you must build offline for the compute node first and then
build offline for the front-end node. You may build offline using the krellroot
concept or not. Using krellroot allows you to just build the new openspeedshop-2.4
updates when they arrive without building all the krellroot components over again.

Compute node – O|SS collectors and runtimes

Build O|SS collectors and runtimes without using krell root components

./install-tool --build-offline

--runtime-only --target-shared --target-arch bgq

 26

--openss-prefix /usr/global/tools/openspeedshop/oss-dev/bgq/ossoff_v2.4.0/compute
--with-mpich2 /bgsys/drivers/ppcfloor/comm/gcc

Build krell root components for compute node
./install-tool –-runtime-only –-target-shared --target-arch bgq --build-krell-root

--krell-root-prefix /usr/global/tools/openspeedshop/ossdev/bgq/krellroot_v2.4.0/compute
--with-mpich2 /bgsys/drivers/ppcfloor/comm/gcc

Build O|SS collectors and runtimes using krell root components

./install-tool --build-offline

--runtime-only --target-shared --target-arch bgq
--openss-prefix /usr/global/tools/openspeedshop/oss-dev/bgq/ossoff_v2.4.0/compute
--krell-root-prefix /usr/global/tools/openspeedshop/ossdev/bgq/krellroot_v2.4.0/compute
 --with-mpich2 /bgsys/drivers/ppcfloor/comm/gcc

Front end node – O|SS viewer

Build O|SS Viewer not using krell root components
./install-tool --build-offline

--openss-prefix /usr/global/tools/openspeedshop/oss-dev/bgq/ossoff_v2.4.0
--with-mpich2 /bgsys/drivers/ppcfloor/comm/gcc
--with-runtime-dir /usr/global/tools/openspeedshop/oss-dev/bgq/ossoff_v2.4.0/compute

Build krell root components
./install-tool --build-krell-root

--krell-root-prefix /usr/global/tools/openspeedshop/oss-dev/bgq/krellroot_v2.4.0
--with-mpich2 /bgsys/drivers/ppcfloor/comm/gcc

Build O|SS viewer using krell root components
./install-tool --build-offline

--openss-prefix /usr/global/tools/openspeedshop/oss-dev/bgq/ossoff_v2.4.0
--krell-root-prefix /usr/global/tools/openspeedshop/oss-dev/bgq/krellroot_v2.4.0
--with-mpich2 /bgsys/drivers/ppcfloor/comm/gcc
–-with-runtime-dir /usr/global/tools/openspeedshop/oss-dev/bgq/ossoff_v2.4.0/compute

Intel MIC (KNL) Platform Install Examples

The builds of O|SS, CBTF and supporting components are done on the Intel MIC KNL
login node. Use the generic cluster build examples above.

Intel MIC (KNC) Co-Processor Platform Install Examples

The builds of O|SS, CBTF and supporting components are done on the Intel MIC co-
process login node (with Intel MIC specific software: compilers, libraries). This
example build scenario is based on experiences from building NASA’s maia system
and the NERSC test bed MIC system named babbage.

 27

Instructions for building O|SS CBTF based versions on Intel MIC platforms

We have moved to a multi-step process for building on platforms where the front-
end node and the compute nodes are running different processor sets. By building
the compute node O|SS and components with the compilers suggested for running
on the compute nodes and by building the front-end node O|SS and components we
are able to optimally support the Intel MIC platform.

The high level view is to first build for the compute nodes by building the
components needed by O|SS and CBTF (krellroot), then build the CBTF components,
and finally build O|SS. After the component node versions are built, then we do a
similar set of builds for the front-end components and O|SS and CBTF clients.

Building for the compute nodes

This must be done first because we pass the O|SS and CBTF compute node
installation directories as arguments to the front-end install-tool build commands.

Setup up the build environment for building for the compute nodes

Build the compute node version of krellroot
./install-tool --build-krell-root

--runtime-only
--target-arch mic
--krell-root-prefix /home/jgalaro/krellroot_stable/compute

Build the compute node versions of cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl
./install-tool --build-cbtf-all

--runtime-only
--target-arch mic
--cbtf-prefix /home/jgalaro/cbtf_only_stable/compute
--krell-root-prefix /home/jgalaro/krellroot_stable/compute

Build the compute node versions of O|SS for the CBTF version

Note: There is nothing to build, as this version uses the CBTF compute node
components for gathering the data. Those were built in the --build-cbtf-all install-
tool build command.

Building for the front-end or login nodes

Build the front-end node version of krellroot
./install-tool --build-krell-root

 28

--krell-root-prefix /home/jgalaro/krellroot_stable

Build the front-end node versions of cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl
Note: The --with-cn-<component> lines have compute node installations as their
arguments. We are pointing the front-end build to the compute node runtime
libraries in order to run the properly built compute node versions of the runtime
libraries.

./install-tool --build-cbtf-all

--runtime-target-arch mic
--cbtf-prefix /home/jgalaro/cbtf_only_stable
--krell-root-prefix /home/jgalaro/krellroot_stable
--with-cn-boost /home/jgalaro/krellroot_stable/compute
--with-cn-mrnet /home/jgalaro/krellroot_stable/compute
--with-cn-xercesc /home/jgalaro/krellroot_stable/compute
--with-cn-libmonitor /home/jgalaro/krellroot_stable/compute
--with-cn-libunwind /home/jgalaro/krellroot_stable/compute
--with-cn-dyninst home/jgalaro/krellroot_stable/compute
--with-cn-cbtf-krell /home/jgalaro/cbtf_only_stable/compute
--with-cn-cbtf /home/jgalaro/cbtf_only_stable/compute
--with-binutils /home/jgalaro/krellroot_stable
--with-boost /home/jgalaro/krellroot_stable
--with-mrnet /home/jgalaro/krellroot_stable
--with-xercesc /home/jgalaro/krellroot_stable
--with-libmonitor /home/jgalaro/krellroot_stable
--with-libunwind /home/jgalaro/krellroot_stable
--with-dyninst /home/jgalaro/krellroot_stable

Build the front-end node version of O|SS for the CBTF version
./install-tool --target-arch cray

--build-oss
--openss-prefix /home/jgalaro/osscbtf_stable
--with-cn-cbtf-krell /home/jgalaro/cbtf_only_stable/compute
--krell-root-prefix /home/jgalaro/krellroot_stable
--with-mpich2 /opt/cray/mpt/7.0.1/gni/mpich2-gnu/48
--with-papi /opt/cray/papi/5.3.1
--with-boost /home/jgalaro/krellroot_stable
--with-mrnet /home/jgalaro/krellroot_stable
--with-xercesc /home/jgalaro/krellroot_stable
--with-libmonitor /home/jgalaro/krellroot_stable
--with-libunwind /home/jgalaro/krellroot_stable
--with-dyninst /home/jgalaro/krellroot_stable
--with-libelf /home/jgalaro/krellroot_stable
--with-libdwarf /home/jgalaro/krellroot_stable
--with-binutils /home/jgalaro/krellroot_stable

 29

--cbtf-prefix /home/jgalaro/cbtf_only_stable

ARM Platform Install Examples

Instructions for O|SS CBTF based versions on ARM platforms

Basically building for the ARM is similar to building for a generic cluster, except that
we need to know that we are building for the ARM in order to add some special
compiler options (-funwind-tables -fasynchronous-unwind-tables) for unwinding call
paths. So, we ask for builders to specify the “--target-arch arm” phrase to the
“install-tool” build commands.

Building for the ARM platform

Setup up the build environment for building for the front-end or login nodes

 module load cmake

Build the krellroot - components needed to support building cbtf and O|SS

./install-tool --build-krell-root

--target-arch arm
--krell-root-prefix /home/jgalaro/krellroot_stable
--with-openmpi /home/projects/arm64/openmpi/1.8.2/gnu/4.9.1
--with-qt3 /home/jgalaro/qt3

Build cbtf, cbtf-krell, cbtf-argonavis, cbtf-lanl

./install-tool --build-cbtf-all

--target-arch arm
--cbtf-prefix /home/jgalaro/cbtf_only_stable
--krell-root-prefix /home/jgalaro/krellroot_stable
--with-openmpi /home/projects/arm64/openmpi/1.8.2/gnu/4.9.1

Build O|SS for the CBTF version
./install-tool --build-oss

--target-arch arm
--cbtf-prefix /home/jgalaro/cbtf_only_stable
--krell-root-prefix /home/jgalaro/krellroot_stable
--openss-prefix /home/jgalaro/osscbtf_stable
--with-openmpi /home/projects/arm64/openmpi/1.8.2/gnu/4.9.1

 30

To Run O|SS

Please refer to the Quick Start Guide from the O|SS documentation web-site page:

https://www.openspeedshop.org/wp/documentation/
for a short introduction to how to use O|SS.

For access the User’s Reference Guide from the O|SS documentation web-site page:

https://www.openspeedshop.org/wp/documentation/

These are the best sources for information on how to run O|SS.

Environment Setup

OPENSS_PLUGIN_PATH

This environment variable specifies where the *O|SS* main program will look for
experiment plugins. This is in addition to the normal search path, which is
"<installdir>/lib{64}/openspeedshop” Prior to O|SS initialization set this variable to
the path to your non-default plugins, (e.g. "setenv OPENSS_PLUGIN_PATH
/g2/install/lib/openspeedshop)

LD_LIBRARY_PATH

This environment variable points to the directories where O|SS component libraries
and O|SS libraries are installed.
Set this environment variable to <installdir>/lib{64} (e.g. "setenv
LD_LIBRARY_PATH <installdir>/lib{64}:$LD_LIBRARY_PATH)

DYNINSTAPI_RT_LIB

This environment variable points to the directory where the Dyninst (dynamic
runtime library) component runtime library is installed. This library is used in O|SS
to detect loops and create per-loop statistic performance information available in
the O|SS views.
Set this environment variable to
 <installdir for dyninst>/lib{64}/libdyninstAPI_RT.so
For example:
 setenv DYNINSTAPI_RT_LIB <installdir for dyninst>/lib{64/libdyninstAPI_RT.so

OPENSS_MPI_IMPLEMENTATION (for offline mode of operation)

This environment variable specifies the MPI implementation being used by the MPI
application whose performance is being analyzed. Should be set to one of the
currently supported MPI implementations:

https://www.openspeedshop.org/wp/documentation/
https://www.openspeedshop.org/wp/documentation/

 31

 mpich

 mpich2

 mpt

 mvapich

 mvapich2

 openmpi

O|SS can auto-detect most of the MPI implementations that an
MPI application is using. So, this variable will only be used to override the auto-
detection code, if need be.

PATH

This environment variable specifies the path to the O|SS component executables and
to the O|SS executables. Set this to: <installdir>/bin (e.g. setenv PATH
<installdir>/bin:$PATH).

OPENSS_RAWDATA_DIR (offline mode of operation only)

This environment variable specifies the path to where the O|SS offline mode of
operation will store the rawdata files representing the performance data that was
gathered from the user application. This is needed on clusters where the default
rawdata file directory, /tmp, is not shared across the nodes. If this is the case on the
cluster you are running the offline mode of operation (for example: osspcsamp –
offline …), then OPENSS_RAWDATA_DIR must be set to a shared file system
directory. Otherwise, /tmp is used. Set this to:
 OPENSS_RAWDATA_DIR <path_to_subdir_for_rawdata_file_writing>
(e.g. setenv OPENSS_RAWDATA_DIR /p/lscratchc/jeg).

OPENSS_DB_DIR

This environment variable specifies the path to where the offline version of openss
will build the O|SS database file. If you are on a file system that does not have file
locking turned on, the sqlite component will not be able to create the database file.
You can use this environment variable to specify a path to a file system that does
have locking turned to be used for the database file creation.

Runtime Environment Examples

The following runtime environment examples can be used as examples for creating
module, dotkit, or softenv files depending on your systems execution environment.

Generic Cluster Module File Example

 32

If your system supports the environment module file runtime environment setup,
then these examples will provide some guidance for your O|SS runtime environment
file creation.

O|SS module file example

#%Module1.0###

openss modulefile

proc ModulesHelp { } {
 global version openss

 puts stderr "\topenss - loads the OpenSpeedShop software & application environment"
 puts stderr "\n\tThis adds $oss/* to several of the"
 puts stderr "\tenvironment variables."
 puts stderr "\n\tVersion $version\n"
}

NOTE ---
The paths may need adjustment for different library naming schemes
NOTE ---

module-whatis "Loads the OpenSpeedShop runtime environment."

for Tcl script use only
set version 2.4.0.latest

Set up variables to reference later for the krell root, cbtf, and OpenSpeedShop proper
set base /home/jeg/openss/power
set root ${base}/krellroot_v2.4.0.latest
set cbtf ${base}/cbtf_v2.4.0.latest
set cbtfk ${base}/cbtf_v2.4.0.latest
set oss ${base}/osscbtf_v2.4.0.latest
set qtgraph ${base}/QtGraph-1.0.0
set graphviz ${base}/graphviz-2.41.0

XPLAT_RSH is needed for MRNet which is now needed for use in CBTF
setenv XPLAT_RSH ssh

For the mpi experiments only - specify the MPI implementation of your
application that will be run with OpenSpeedShop. These are the
mpi, mpit, and mpip experiments. All other experiment types will
ignore this setting. It is only needed for mpi, mpit, and mpip.
setenv CBTF_MPI_IMPLEMENTATION openmpi
setenv OPENSS_MPI_IMPLEMENTATION openmpi

This is needed if you use the --offline argument following the
convenience scripts, for example: osspcsamp --offline "mpirun -np 4 ./nbody"
This is the offline mode of operation which is now built into the
CBTF based version of OpenSpeedShop
setenv OPENSS_RAWDATA_DIR .

Only need these CBTF specific variables for situations where the environment is not passed
setenv MRNET_COMM_PATH $cbtfk/sbin/cbtf_mrnet_commnode
setenv CBTF_MRNET_BACKEND_PATH $cbtfk/sbin/cbtf_libcbtf_mrnet_backend

 33

Set up the paths for the OSS/CBTF version of OpenSpeedShop
prepend-path PATH $root/bin
prepend-path PATH $cbtf/bin
prepend-path PATH $cbtfk/sbin
prepend-path PATH $cbtfk/bin
prepend-path PATH $oss/bin
prepend-path MANPATH $oss/share/man

Set up the dyninst runtime library path for the OSS/CBTF version of OpenSpeedShop
This is required for finding loops and gathering symbol table information.
setenv DYNINSTAPI_RT_LIB $root/lib/libdyninstAPI_RT.so

Set up the library paths for the OSS/CBTF version of OpenSpeedShop
prepend-path LD_LIBRARY_PATH $root/lib64
prepend-path LD_LIBRARY_PATH $root/lib
prepend-path LD_LIBRARY_PATH $cbtf/lib64
prepend-path LD_LIBRARY_PATH $cbtfk/lib64
prepend-path LD_LIBRARY_PATH $oss/lib64
prepend-path LD_LIBRARY_PATH $qtgraph/lib/5.6.1
prepend-path LD_LIBRARY_PATH $graphviz/lib
prepend-path LD_LIBRARY_PATH /usr/local/cuda-8.0/extras/CUPTI/lib64

Set up the python path so that the python scripting API can find
the openss python module files.
setenv PYTHONPATH $oss/lib64/openspeedshop

Generic Cluster Dotkit File Example

This is an example of a dotkit file used for a 64-bit cluster platform installation and
is not generalized to support different platforms other than the 64-bit cluster it was
written for. Use the “use <filename of dotkit file>” command to activate the O|SS
runtime environment. Note: do not include the “.dk” portion of the filename when
using the “use” command.

O|SS dotkit example

#c performance/profile
#d O|SS (Version 2.4.0)
dk_setenv OPENSS /usr/global/tools/openspeedshop/oss-dev/OSS_2.4.0
dk_setenv KROOT /usr/global/tools/openspeedshop/oss-dev/krellroot_2.4.0
dk_setenv CBTF /usr/global/tools/openspeedshop/oss-dev/cbtf_2.4.0
XPLAT_RSH is needed for MRNet which is now needed for use in CBTF
dk_setenv XPLAT_RSH ssh
If cuda present, then we need hooks to the CUPTI interface
dk_setenv CUDA_PATH /usr/global/tools/cuda-8.0
If the new Qt4/Qt5 GUI was built, we the paths to graphviz and QtGraph
dk_setenv QTGRAPH /usr/ global/tools/openspeedshop/oss-dev/QtGraph-1.0.0
dk_setenv GRAPHVIZ /usr/ global/tools/openspeedshop/oss-dev/graphviz-2.40.1

For the mpi experiments only - specify the MPI implementation of your
application that will be run with OpenSpeedShop. These are the
mpi, mpit, and mpip experiments. All other experiment types will
ignore this setting. It is only needed for mpi, mpit, and mpip.
dk_setenv OPENSS_MPI_IMPLEMENTATION mvapich2

dk_setenv OPENSS_PLUGIN_PATH $OPENSS/lib64/openspeedshop
dk_setenv OPENSS_DOC $OPENSS/share/doc/packages/OpenSpeedShop/

 34

Find Dyninst for generation of per-loop statistics
dk_setenv DYNINSTAPI_RT_LIB $KROOT/lib64/libdyninstAPI_RT.so

dk_alter PATH $KROOT/bin
dk_alter PATH $OPENSS/bin

dk_alter PATH $CBTF/bin
dk_alter PATH $CBTF/sbin
dk_alter LD_LIBRARY_PATH $CBTF/lib64
dk_alter LD_LIBRARY_PATH $KROOT/lib64
dk_alter LD_LIBRARY_PATH $KROOT/lib

dk_alter LD_LIBRARY_PATH $OPENSS/lib64
dk_alter LD_LIBRARY_PATH $QTGRAPH/lib/5.6.1
dk_alter LD_LIBRARY_PATH $GRAPHVIZ/lib
dk_alter LD_LIBRARY_PATH $CUDA_PATH/extras/CUPTI/lib64

Blue Gene/Q Softenv File Example

Offline version (no krell root usage)

This is an example of a softenv file used for a Blue Gene/Q installation. Use the
“resoft <filename of softenv file>” command to activate the O|SS runtime
environment. Note that the installation paths in this file follow the convention
where compute node version of O|SS is installed as a “bgq” subdirectory of the
installation path for the viewer version. For illustration:

 Viewer version installed in: /home/projects/oss/oss
 Compute node version installed in: /home/projects/oss/oss/bgq

The O|SS .soft file.
Remember to type "resoft" after working on this file.

OSS = /home/projects/oss/oss
TARCH = bgq

Set up OSS environment variables

Find the executable portions of O|SS (order is important here)
PATH += $OSS/$TARCH/bin
PATH += $OSS/bin

Find the libraries for O|SS (order is important here)
LD_LIBRARY_PATH += $OSS/$TARCH/lib64
LD_LIBRARY_PATH += $OSS/lib64

Find the runtime collectors
OPENSS_PLUGIN_PATH = $OSS/$TARCH/lib64/openspeedshop

Find Dyninst for generation of per-loop statistics
DYNINSTAPI_RT_LIB $OSS/lib64/libdyninstAPI_RT.so

Tell the tool what the application MPI implementation is
Needed if supporting multiple implementations and running the "mpi", "mpit", or "mpiotf" experiments
OPENSS_MPI_IMPLEMENTATION = mpich2

 35

Paths to documentation and man pages
OPENSS_DOC_DIR = $OSS/share/doc/packages/OpenSpeedShop
MANPATH = $OSS/share/man

Use the basic environment.
@default

Offline version (with krell root usage)

The O|SS .soft file.
Remember to type "resoft" after working on this file.

OSS = /home/projects/oss/oss
KROOT = /home/projects/krellroot
TARCH = bgq

Set up OSS environment variables

Find the executable portions of O|SS (order is important here)
PATH += $KROOT/$TARCH/bin
PATH += $KROOT/bin
PATH += $OSS/$TARCH/bin
PATH += $OSS/bin

Find the libraries for O|SS (order is important here)
LD_LIBRARY_PATH += $KROOT/$TARCH/lib64
LD_LIBRARY_PATH += $KROOT/lib64
LD_LIBRARY_PATH += $KROOT/lib
LD_LIBRARY_PATH += $OSS/$TARCH/lib64
LD_LIBRARY_PATH += $OSS/lib64

Find the runtime collectors
OPENSS_PLUGIN_PATH = $OSS/$TARCH/lib64/openspeedshop

Find Dyninst for generation of per-loop statistics
DYNINSTAPI_RT_LIB $KROOT/lib64/libdyninstAPI_RT.so

Tell the tool what the application MPI implementation is
Needed if supporting multiple implementations and running the "mpi", "mpit", or "mpiotf" experiments
OPENSS_MPI_IMPLEMENTATION = mpich2

Paths to documentation and man pages
OPENSS_DOC_DIR = $OSS/share/doc/packages/OpenSpeedShop
MANPATH = $OSS/share/man

Use the basic environment.
@default

Cray Platform Module File Example

If your system supports the environment module file runtime environment setup,
then these examples will provide some guidance for your O|SS runtime environment
file creation. Note that the compiler library path was prepended to the
LD_LIBRARY_PATH below. That is necessary if building with a compiler that is
installed in a non-standard location (a module file was loaded). O|SS needs to find

 36

the libstdc++ and libgomp libraries that the tool was built with when the tool
executes.

Cray platform CBTF version module file example

#%Module1.0###

oss cbtf 2.4.0 modulefile

proc ModulesHelp { } {
 global version openspeedshop-cbtf

 puts stderr "\topenspeedshop-cbtf - Loads the OpenSpeedShop software target back-end (be) and front-end
(fe) execution environment for Cray"
 puts stderr "\n\tVersion $version\n"
}

module-whatis "Loads the OpenSpeedShop target back-end node (be) and front-end (fe) execution
environment."

for Tcl script use only
set version 2.4.0
set root_prefix /p/home/galarowi/openss/krellroot_v2.4.0
set cbtf_prefix /p/home/galarowi/openss/cbtf_v2.4.0
set oss_prefix /p/home/galarowi/openss/osscbtf_v2.4.0
Path to the qt3 toolkit
set qt /p/home/galarowi/openss/krellroot_v2.4.0/qt3
Path to the libraries needed for the qt4/qt5 toolkit needed for the new Qt4/Qt5 based gui
set graphviz /p/home/galarowi/openss/graphviz-2.40.1
set qtgraph /p/home/galarowi/openss/QtGraph-1.0.0
#set papi /opt/cray/papi/5.4.3.1

setenv OPENSS_DOC_DIR $oss_prefix/share/doc/packages/OpenSpeedShop

This is needed if you use the --offline argument following the
convenience scripts, for example: osspcsamp --offline "mpirun -np 4 ./nbody"
This is the offline mode of operation which is now built into the
CBTF based version of OpenSpeedShop
setenv OPENSS_RAWDATA_DIR .

For the mpi experiments only - specify the MPI implementation of your
application that will be run with OpenSpeedShop. These are the
mpi, mpit, and mpip experiments. All other experiment types will
ignore this setting. It is only needed for mpi, mpit, and mpip.
setenv CBTF_MPI_IMPLEMENTATION mpich
setenv OPENSS_MPI_IMPLEMENTATION mpich

XPLAT_RSH is needed for MRNet which is now needed for use in CBTF
setenv XPLAT_RSH ssh

Only need these CBTF specific variables for situations where the environment is not passed
setenv MRNET_COMM_PATH $cbtf_prefix/sbin/cbtf_mrnet_commnode
setenv CBTF_MRNET_BACKEND_PATH $cbtf_prefix/sbin/cbtf_libcbtf_mrnet_backend

oss_prefix_target/bin must come first to
find the osslink in the target directory

#prepend-path PATH $papi/bin

 37

prepend-path PATH $root_prefix/bin
prepend-path PATH $oss_prefix/bin
prepend-path PATH $cbtf_prefix/bin
prepend-path PATH $cbtf_prefix/sbin
prepend-path MANPATH $oss_prefix/share/man

eval set [array get env HOME]
set ownmoddir $HOME/privatemodules

Set up the dyninst runtime library path for the OSS/CBTF version of OpenSpeedShop
This is required for finding loops and gathering symbol table information.
setenv DYNINSTAPI_RT_LIB $root_prefix/lib64/libdyninstAPI_RT.so

Might need this if you use the system installed papi, here as a hint
#prepend-path LD_LIBRARY_PATH $papi/lib64

Setup the library paths for the runtime environment
prepend-path LD_LIBRARY_PATH $root_prefix/lib
prepend-path LD_LIBRARY_PATH $root_prefix/lib64
prepend-path LD_LIBRARY_PATH $cbtf_prefix/lib64
prepend-path LD_LIBRARY_PATH $oss_prefix/lib64

Setup the library paths for the qt3 runtime environment
prepend-path LD_LIBRARY_PATH $qt/lib64
Setup the library paths for the libraries needed for the qt4/qt5 new GUI runtime environment
prepend-path LD_LIBRARY_PATH $graphviz/lib
prepend-path LD_LIBRARY_PATH $qtgraph/lib64/4.8.6

Intel MIC Platform Module File Examples

If your system supports the environment module file runtime environment setup, then these examples will provide some
guidance for your O|SS runtime environment file creation.

Intel MIC (KNL) platform CBTF version module file example

Use the generic Generic Cluster Module File Example shown in the example above for
KNL installations.

Intel MIC (KNC co-processor) platform CBTF version module file example

#%Module1.0###

osscbtf modulefile

proc ModulesHelp { } {
 global version osscbtf

 puts stderr "\topenss - loads the O|SS software & application environment"
 puts stderr "\n\tThis adds $oss/* to several of the"
 puts stderr "\tenvironment variables."
 puts stderr "\n\tVersion $version\n"
}

module-whatis "Loads the O|SS CBTF instrumentor based runtime environment."

 38

for Tcl script use only
set version 2.4.0
set root /global/u2/j/jgalaro/cori/krellroot_stable
set dynroot /global/u2/j/jgalaro/cori/krellroot_stable
set boostroot /global/u2/j/jgalaro/cori/krellroot_stable
set mrnetroot /global/u2/j/jgalaro/cori/krellroot_stable
set cbtf /global/u2/j/jgalaro/cori/jgalaro/cbtf_only_stable
set cbtfk /global/u2/j/jgalaro/cori/jgalaro/cbtf_only_stable
set oss /global/u2/j/jgalaro/cori/jgalaro/osscbtf_stable
set stdcpp /opt/gcc/5.1.0/snos/

setenv CBTF_MPI_IMPLEMENTATION mpich2
setenv XPLAT_RSH ssh

only need these for situations where the environment is not passed
setenv MRNET_COMM_PATH $cbtfk/sbin/cbtf_mrnet_commnode
setenv CBTF_MRNET_BACKEND_PATH $cbtfk/sbin/cbtf_libcbtf_mrnet_backend

prepend-path PATH $cbtfk/sbin
prepend-path PATH $cbtfk/bin
prepend-path PATH $oss/bin
prepend-path MANPATH $oss/share/man

eval set [array get env HOME]
set ownmoddir $HOME/privatemodules

setenv DYNINSTAPI_RT_LIB $dynroot/lib64/libdyninstAPI_RT.so

prepend-path LD_LIBRARY_PATH $root/lib64
prepend-path LD_LIBRARY_PATH $root/lib
prepend-path LD_LIBRARY_PATH $mrnetroot/lib64
prepend-path LD_LIBRARY_PATH $dynroot/lib64
prepend-path LD_LIBRARY_PATH $oss/lib64
prepend-path LD_LIBRARY_PATH $cbtf/lib64
prepend-path LD_LIBRARY_PATH $cbtfk/lib64

Because the module for the gcc was used to build OSS we need to make the libstdc++.so.6
available when we are running OSS
prepend-path LD_LIBRARY_PATH $stdcpp/lib64

ARM platform CBTF version module file example

Use the generic Generic Cluster Module File Example shown in the example above for
ARM installations.

Power 8 platform CBTF version module file example

Use the generic Generic Cluster Module File Example shown in the example above for
Power 8 installations.

How to use SPACK to build O|SS

 39

Spack Introduction
Spack is a multi-platform package manager that builds and installs multiple versions and configurations of

software. It works on Linux, macOS, and many supercomputers. Spack is non-destructive: installing a new

version of a package does not break existing installations, so many configurations of the same package can

coexist. Most importantly, Spack is simple. It offers a simple spec syntax so that users can specify versions

and configuration options concisely. Spack is also simple for package authors: package files are written in

pure Python, and specs allow package authors to maintain a single file for many different builds of the

same package. If you’re new to spack and want to start using it, see Getting Started, or refer to the full

manual below.

Open|SpeedShop (O|SS) is an open source multi-platform performance tool enabling performance analysis

of HPC applications running on both single node and large scale Intel, AMD, ARM, Intel Phi, Power PC,

Power 8, GPU processor based systems, including Cray and IBM Blue Gene platforms.

O|SS can be built with spack by downloading the spack package source, as described below. It is possible

to build O|SS with one spack install command. Spack will download, on the fly from the package websites,

all the dependent packages that O|SS needs, build and install them. After the dependent packages are built,

spack will download, build, and install O|SS. Spack creates module file for all the packages that it builds.

The instructions below identify where to find the module file and how to load it.

Spack allows for enabling and disabling O|SS optional build arguments/parameters via a spack feature

named variants. For O|SS, the main variants are MPI implementation identifiers which are used to build

the MPI collectors for those MPI implementations. The spack build command:

spack install openspeedshop +openmpi +mvapich2

will build O|SS with all the collectors, including MPI collectors that will work on OpenMPI and Mvapich2

based applications. Without those variants, all the non-mpi specific experiments will be built, but not the

MPI collectors (no ossmpi, ossmpip, and ossmpit support).

As an optimization to reduce the number of packages that need to be built by the spack install command,

spack has a mechanism to specify package installation locations for packages already built and installed on

the system. Telling spack where to find these already installed packages, like Qt and/or MPI installations,

can save a lot of build time and also allow usage of standard package installation that non-spack built

executables and tools are using. The spack mechanism for this feature is the packages.yaml file that you

create in your $HOME/.spack/linux directory. This file contains a list of packages that you don't want

spack to build. The packages.yaml file is a list of package names and the directories where the package is

already installed. See the example in the quick start guide section. This can save a lot of build time for

packages like Qt, boost, python, mpi, etc...

Support for building O|SS on heterogeneous platforms is now supported as of February 2018 in the

development branch of spack. Support for building on laptops, desktops, and homogeneous clusters

(including Cray platforms) is working and available through the default and development version of spack.

There is now a way to have access to the latest development version of O|SS via the develop version

specification when building O|SS with spack. To access the development version (master git tree), use:

spack install openspeedshop@develop [variants]

Using the @develop clause on the openspeedshop package build will also build newer versions of all the

components that O|SS uses. Especially important are the cbtf packages, as they are now the core of

performance data collection in O|SS.

Without the “@develop” on the openspeedshop By default, spack installs the newest/latest numbered

version of a package. O|SS currently has numbered versions: 2.3.1.3, 2.3.1.4, and 2.3.1.5. By default, the

2.3.1.5 version will be built when this command is used:

spack install openspeedshop [variants]

To build another, specific version, use the version number:

https://spack.readthedocs.io/en/latest/getting_started.html

 40

spack install openspeedshop@2.3.1.4 [variants]

Quick start guides to get started building O|SS with Spack
The following is quick start guide for getting started on building O|SS with spack showing a list for

commands outlining how to download spack and create an example build of O|SS.

$ mkdir openss_spack

$ cd openss_spack/

Download the source from the Spack repository

$ git clone https://github.com/spack/spack.git

Change directories into the spack repository top-level directory

$ cd spack

Setup the spack root and path to the spack executable

$ export SPACK_ROOT=$HOME/openss_spack/spack

$ export PATH=$SPACK_ROOT/bin:$PATH

optional aliases

This is an alias for getting to the package file directories

$ alias cdpack="cd $SPACK_ROOT/var/spack/repos/builtin/packages"

This is an alias to get back to the top-level directory

$ alias cdspack="cd $SPACK_ROOT"

Optionally, this is where the module files will be.

Note linux-fedora26-x86_64 was the name used on this particular platform.

The name will be different for other platforms

$ alias cdmod="cd $SPACK_ROOT/share/spack/modules/linux-fedora26-x86_64 "

Check for non-spack installation specifications in the packages.yaml file

spack won't build packages that you specify in the packages.yaml file. spack

will use the installation path for that package based on what path you point spack to.

$ cat ~/.spack/packages.yaml

Locate compiler versions if you haven't already done that. You may need to load or

unload module files so that spack can find the compilers you want to use, if they are not

in default install locations.

$ spack compiler find

This file is created by the “spack compiler find” command and

will contain the list of available compilers

$ cat $HOME/.spack/linux/compilers.yaml

Building cbtf, cbtf-krell, and openspeedshop using spack

The + phrases are variants in spack. The +openmpi and +mvapich2

below tell spack to build the openspeedshop mpi collectors for openmpi and mvapich2

There are +mpt +mpich +mvapich variants as well.

$ spack install openspeedshop +openmpi +mvapich2

 41

 # If you want a specific compiler version use the %gcc@ syntax or %intel@, etc
$ spack install openspeedshop%gcc@4.8.3 +openmpi +mvapich2

To build a version of openspeedshop that supports the cuda experiment, use +cuda

$ spack install openspeedshop +openmpi +mvapich2 +cuda

Building the cbtf-argonavis-gui (new Qt4/Qt5 GUI) using spack
To build the new O|SS Qt4/Qt5 based graphical user interface use the spack install command:

$ spack install cbtf-argonavis-gui

Example usage following quick start guide commands
The following section contains the output of the quick start spack command execution with outputs

showing the outputs of the example build of O|SS with spack.

$ cd

$ mkdir openss_spack

$ cd openss_spack /

$ git clone https://github.com/spack/spack.git

Cloning into 'spack'...

remote: Counting objects: 74393, done.

remote: Compressing objects: 100% (90/90), done.

remote: Total 74393 (delta 43), reused 46 (delta 9), pack-reused 74282

Receiving objects: 100% (74393/74393), 26.35 MiB | 4.67 MiB/s, done.

Resolving deltas: 100% (35388/35388), done.

$ ls -lastr

 total 48

40 drwxrwxrwx. 455 <username> <username> 36864 Jul 27 16:45 ..

4 drwxrwxr-x. 3 <username> <username> 4096 Jul 27 16:45 .

4 drwxrwxr-x. 8 <username> <username> 4096 Jul 27 16:45 spack

$ cd spack

$ ls -lastr

total 104

4 drwxrwxr-x. 3 <username> <username> 4096 Jul 27 16:45 ..

4 -rw-rw-r--. 1 <username> <username> 500 Jul 27 16:45 .codecov.yml

4 -rw-rw-r--. 1 <username> <username> 3695 Jul 27 16:45 .travis.yml

 4 -rw-rw-r--. 1 <username> <username> 1592 Jul 27 16:45 NOTICE

8 -rw-rw-r--. 1 <username> <username> 5896 Jul 27 16:45 .mailmap

28 -rw-rw-r--. 1 <username> <username> 26426 Jul 27 16:45 LICENSE

4 -rw-rw-r--. 1 <username> <username> 294 Jul 27 16:45 .gitignore

4 -rw-rw-r--. 1 <username> <username> 827 Jul 27 16:45 .flake8

4 -rw-rw-r--. 1 <username> <username> 746 Jul 27 16:45 .coveragerc

8 -rw-rw-r--. 1 <username> <username> 4512 Jul 27 16:45 README.md

4 drwxrwxr-x. 2 <username> <username> 4096 Jul 27 16:45 bin

4 drwxrwxr-x. 3 <username> <username> 4096 Jul 27 16:45 etc

4 drwxrwxr-x. 3 <username> <username> 4096 Jul 27 16:45 lib

4 drwxrwxr-x. 3 <username> <username> 4096 Jul 27 16:45 share

4 -rw-rw-r--. 1 <username> <username> 114 Jul 27 16:45 pytest.ini

4 drwxrwxr-x. 3 <username> <username> 4096 Jul 27 16:45 var

4 drwxrwxr-x. 8 <username> <username> 4096 Jul 27 16:45 .

 42

4 drwxrwxr-x. 8 <username> <username> 4096 Jul 27 16:45 .git

$ pwd

 /home/<username>/openss_spack/spack

Set up the spack root and path that spack needs to execute

$ export SPACK_ROOT=/home/<username>/openss_spack/spack

$ export PATH=$SPACK_ROOT/bin:$PATH

These are just convenience aliases that I use

$ alias cdpack="cd $SPACK_ROOT/var/spack/repos/builtin/packages"

$ alias cdmod="cd $SPACK_ROOT/share/spack/modules/"

$ alias cdspack="cd $SPACK_ROOT"

$ cat ~/.spack/packages.yaml

packages:

 mvapich2:

 buildable: False

 paths:

 mvapich2@2.2%gcc@4.8.3 arch=linux-fedora26-x86_64: /opt/mvapich2-1.2p1

 openmpi:

 buildable: False

 paths:

 openmpi@1.8.2%gcc@4.8.3 arch=linux-fedora26-x86_64: /opt/openmpi-1.8.2

 cuda:

 buildable: False

 paths:

 cuda@6.0%gcc@4.8.3 arch=linux-fedora26-x86_64: /usr/local/cuda-6.0

 glib:

 paths:

 glib@1.2.10-39%gcc@4.8.3 arch=linux-fedora26-x86_64: /usr

 qt: +krellpatch

 paths:

 qt@3.3.8b%gcc@4.8.3 arch=linux-fedora26-x86_64: /usr/lib64/qt-3.3

$ spack compiler find

 ==> Found no new compilers

==> Compilers are defined in the following files:

/home/<username>/.spack/linux/compilers.yaml

$ cat /home/<username>/.spack/linux/compilers.yaml

compilers:

- compiler:

 environment: {}

 extra_rpaths: []

 flags: {}

 modules: []

 operating_system: fedora26

 paths:

 cc: /usr/bin/gcc

 cxx: /usr/bin/g++

 f77: /usr/bin/gfortran

 fc: /usr/bin/gfortran

 spec: gcc@4.8.3

 target: x86_64

 43

You only need the %gcc@4.8.3 if you want to build with different compiler versions

in the future and want to keep the builds separate.

$ spack install openspeedshop%gcc@4.8.3 +openmpi +mvapich2

 ==> Installing libsigsegv

==> Fetching https://ftp.gnu.org/gnu/libsigsegv/libsigsegv-2.11.tar.gz

100.0%

==> Staging archive: /home/<username>/openss_spack/spack/var/spack/stage/libsigsegv-2.11-

zcczh3kvlgq6mhlb7oogx6yjoxlsiuow/libsigsegv-2.11.tar.gz

==> Created stage in /home/<username>/openss_spack/spack/var/spack/stage/libsigsegv-2.11-

zcczh3kvlgq6mhlb7oogx6yjoxlsiuow

==> Building libsigsegv [AutotoolsPackage]

==> Executing phase : 'autoreconf'

==> Executing phase : 'configure'

...

...

Once the build is finished the module file will be located in this location:

Note: linux-fedora26-x86_64 will be a different name in your builds == platform type dependent.

$ $SPACK_ROOT/share/spack/modules/linux-fedora26-x86_64

To use O|SS and the underlying cbtf components

$ module use $SPACK_ROOT/share/spack/modules/linux-fedora26-x86_64

$ module load openspeedshop...(long list of characters)

Getting the latest spack sources, i.e. the development branch and
updating to the latest source.

If there are fixes that have not made it into the master version and you need those fixes, this is a way to get

the latest sources.

Download the source from the Spack repository

$ git clone https://github.com/spack/spack.git

Change directories into the spack base directory

$ cd spack

Change git to point to the development sources

$ git checkout -t origin/develop

Add the repository as the remote upstream value

$ git remote add upstream https://github.com/spack/spack.git

Fetch the latest sources from the repository

$ git pull upstream develop

Now you have the latest sources to use for the build or development work

Note: When you update there is a good possibility that the versions of many packages will change. If you

are using a spack mirror (source for packages on platforms with restricted internet access) you will need to

update the spack mirror so that you have the new source code corresponding to the new versions being used

in spack due to the update.

mailto:%25gcc@4.8.3
https://github.com/spack/spack.git

 44

Details about O|SS specific spack options

What components are supported
Builds for the spack packages listed below have been developed and are supported by the Krell Institute.

 openspeedshop

 cbtf

 cbtf-krell

 cbtf-argonavis

 cbtf-lanl

 cbtf-argonavis-gui

 qtgraph (support for the cbtf-argonavis-gui)

Component Variants Explained
Each of the Krell Institute supported packages allows a number of spack variants. A variant is a build

option that the user can specify to control build options for the component. For example, if the user wants

cbtf-krell to build openmpi MPI data collectors then they would specify the spack variant +openmpi on the

spack install command line for building cbtf-krell, like this: spack install cbtf-krell +openmpi

Internal to the cbtf-krell package file, this looks like this, where the variant is causing a cmake variable to

be set:

if spec.satisfies('+openmpi'):

 MPIOptions.append('-DOPENMPI_DIR=%s' % spec['openmpi'].prefix)

Without the openmpi variant, the spack build for cbtf-krell would not build MPI experiment collectors for

the openmpi MPI implementation.

The following tables list the component, variant name and explanation of the purpose for the variant. cbtf-

argonavis-gui and qtgraph have no variants at this time.

Component Variant Explanation / Purpose

openspeedshop cbtf Build with cbtf instrumentor enabled

 crayfe Build only the front-end tool using the runtime libraries from the

compute node build. Used for heterogeneous builds.

 cti Build MRNet with the CTI startup option.

 cuda Build with cuda packages included.

 gui Build or not build a GUI of choice, options: none, qt3, qt4

 runtime Build only the runtime libraries and collectors. Used for heterogeneous

builds.

 offline Not used – old offline build option

 mpich Build the mpich MPI implementation collectors, passed to cbtf-krell for

actual build

 mpt Build the mpt MPI implementation collectors, passed to cbtf-krell for

actual build

 mvapich Build the mvapich MPI implementation collectors, passed to cbtf-krell

for actual build

 mvapich2 Build the mvapich2 MPI implementation collectors, passed to cbtf-krell

for actual build

 openmpi Build the openmpi MPI implementation collectors, passed to cbtf-krell

for actual build

Component Variant Explanation / Purpose

cbtf runtime Build only the runtime libraries and collectors. Used for heterogeneous

builds.

 45

Component Variant Explanation / Purpose

cbtf-krell crayfe Build only the front-end tool using the runtime libraries from the compute

node build. Used for heterogeneous builds.

 cti Build MRNet with the CTI startup option.

 runtime Build only the runtime libraries and collectors. Used for heterogeneous

builds.

 mpich Build the mpich MPI implementation collectors

 mpt Build the mpt MPI implementation collectors

 mvapich Build the mvapich MPI implementation collectors

 mvapich2 Build the mvapich2 MPI implementation collectors

 openmpi Build the openmpi MPI implementation collectors

Component Variant Explanation / Purpose

cbtf-argonavis runtime Not implemented: Build only the runtime libraries and collectors. Used

for heterogeneous builds.

Component Variant Explanation / Purpose

cbtf-lanl runtime Not implemented: Build only the runtime libraries and collectors. Used

for heterogeneous builds.

Module file creation is automatic
Spack will create module files for each component, but they will be very basic, mainly setting the PATH

variable to the install bin directory for the package being built. However, spack allow the authors of

packages to add to the module file by supplying spack functions that will set environment variables and

append to library paths or path variables. So far, only the openspeedshop module file has been enhanced

by the Krell Institute.

The module file directory can be found at this location: <spack directory>/share/spack/modules/<machine

type>. All the spack created modules will be located at this location. For O|SS, all one should have to do

is load the openspeedshop-<long name> module file in order to run experiments and view performance

databases.

Restricted network access solution

Spack has a feature to handle cases when your network prevents accessing source on the platform you are

building on. Many laboratory systems have security measures in place that prevent the default workflow

of spack from working. Spack is unable to download packages from across the web due to the security

checks. For this situation, spack provides a mirror capability, where a directory of the package source files

can be created based on a spack mirror create command. For more spack documentation see this

url:http://spack.readthedocs.io/en/latest/mirrors.html?highlight=mirror

See below for an example of an O|SS mirror creation on a platform that allows downloading package

sources and activation on the platform that doesn’t.

Note that for the build on the restricted access platform can succeed, make sure that the restricted platform

version of spack matches with the spack being used to create the mirror. If not, some package source

versions might not be available in the mirror, causing the build to fail.

Create mirror which contains all possible variants you might run

http://spack.readthedocs.io/en/latest/mirrors.html?highlight=mirror

 46

Do this on a machine that has full access to the internet and the files needed

Note: the gcc version information is an example only, your gcc version may be different or not required

$ spack mirror create -d /home/<username>/spack-mirror -D

openspeedshop+openmpi+mvapich2+mpich%gcc@4.8

Because the new O|SS gui is not built in the base openspeedshop package,

a separate mirror command is necessary if building the Qt4/Qt5 GUI is desired

$ spack mirror create -d /home/<username>/spack-mirror –D cbtf-argonavis-gui

Tar and gzip this directory for move to build platform

$ tar -cvf spack_mirror.tar /home/<username>/spack-mirror-2018-04-05

$ gzip spack_mirror-2018-04-05.tar

Un-zip and tar on secure/build platform

$ tar -zxvf spack_mirror-2018-04-05.tar.gz

Set up spack to use this mirror directory

After executing this command, the spack build will read files from the mirror directory.

$ spack mirror add linux-spack-mirror /home/user/spack-mirror-2018-04-05

Note: For heterogeneous builds the compute node build needs its own mirror and be sure to change the

module file for the compute node build and mirror. The linux front-end mirror is not visible when building

for the compute node. This is a spack-ism, not related to O|SS.

$ spack mirror add compute-spack-mirror /home/user/spack-mirror-2018-04-05

To remove a spack mirror from being used to find the package file source use this command:

$ spack mirror remove linux-spack-mirror

Example Cray Spack Build: Homogeneous processor platform

Building O|SS on a homogeneous processor platform is very similar to building on a cluster with the

exception of handling the programming environment module files. Basically, one needs to unload

whatever PrgEnv-{intel, gnu, cray, pgi} environment module is loaded and then begin the spack build

process. The example below will use a spack mirror in order to show that aspect of the build process.

This is an optional step and is not needed on systems with full access to the internet for accessing source

files needed in the build. This example will be a complete list of the steps required to build on a

homogenous Cray system.

Create a sub-directory to down load spack into

$ cd <mypath>

$ mkdir openss_spack

$ cd openss_spack /

Download the source from the Spack repository

$ git clone https://github.com/spack/spack.git

Change directories into the spack base directory

$ cd spack

Change git to point to the development sources

$ git checkout -t origin/develop

https://github.com/spack/spack.git

 47

Add the repository as the remote upstream value

$ git remote add upstream https://github.com/spack/spack.git

Fetch the latest sources from the repository

$ git pull upstream develop

Set up the spack root and path that spack needs to execute

$ export SPACK_ROOT=<mypath>/openss_spack/spack

$ export PATH=$SPACK_ROOT/bin:$PATH

These are just convenience aliases that can be used to navigate the spack directories

$ alias cdpack="cd $SPACK_ROOT/var/spack/repos/builtin/packages"

$ alias cdmod="cd $SPACK_ROOT/share/spack/modules/"

$ alias cdspack="cd $SPACK_ROOT"

Next: examine and if needed set up paths to the packages you may not want spack to build

Using existing installations of common packages can be accomplished in spack by using the

packages.yaml file located in $HOME/.spack directory. In this example, only the existing version of

mpich is being used in place of spack building mpich.

$ cat ~/.spack/packages.yaml

openss_spack/spack> cat ~/.spack/packages.yaml

packages:

 mpich:

 buildable: False

 paths:

 mpich@7.6.2%gcc@4.8 arch=cray-CNL-haswell: /opt/cray/pe/mpt/7.7.0/gni/mpich-gnu/5.1

$ module list

Currently Loaded Modulefiles:

 1) modules/3.2.10.6 13) job/2.2.2-6.0.5.0_8.47__g3c644b5.ari

 2) eproxy/2.0.22-6.0.5.0_2.1__g1ebe45c.ari 14) dvs/2.7_2.2.53-6.0.5.2_8.11__ge13250e

 3) intel/17.0.4 15) alps/6.5.28-6.0.5.0_18.6__g13a91b6.ari

 4) craype-network-aries 16) rca/2.2.16-6.0.5.0_15.34__g5e09e6d.ari

 5) craype/2.5.13 17) atp/2.1.1

 6) cray-libsci/17.12.1 18) perftools-base/7.0.0

 7) udreg/2.3.2-6.0.5.0_13.12__ga14955a.ari 19) PrgEnv-intel/6.0.4

 8) ugni/6.0.14-6.0.5.0_16.9__g19583bb.ari 20) cray-mpich/7.7.0

 9) pmi/5.0.13 21) craype-haswell

 10) dmapp/7.1.1-6.0.5.0_49.8__g1125556.ari 22) slurm/17.02.10-SSE.0

 11) gni-headers/5.0.12-6.0.5.0_2.15__g2ef1ebc.ari 23) craype-hugepages2M

 12) xpmem/2.2.4-6.0.5.1_8.17__g35d5e73.ari

Note: These are the compute node compilers and not what we want, although the build might be

successful. These were found because the PrgEnv-intel module was set. This indicates we are building

code for the compute nodes. We want the login/front-end node compilers.

 $ spack compiler find

==> Added 25 new compilers to $HOME/.spack/cray/compilers7.1.0 gcc@6.1.0 gcc@4.9.3 cce@8.6.1

cce@8.5.7 cce@8.5.3 cce@8.4.6

 intel@17.0.1 intel@15.0.5 gcc@6.3.0 gcc@5.3.0 cce@8.6.5 cce@8.6.0 cce@8.5.6 cce@8.5.2

 intel@16.0.3 gcc@7.2.0 gcc@6.2.0 gcc@5.2.0 cce@8.6.2 cce@8.5.8 cce@8.5.5 cce@8.5.0

==> Compilers are defined in the following files:

 $HOME/.spack/cray/compilers.yaml

Unload the compute node build environment module

$ module unload PrgEnv-intel/6.0.4

 48

Now ask spack to find front-end node compilers that we can use to build
$ spack compiler find

==> Added 1 new compiler to /users/<username>/.spack/linux/compilers.yaml

 gcc@4.8

==> Compilers are defined in the following files:

 /users/<username>/.spack/linux/compilers.yaml

This is what the compilers.yaml file looks like

You may have to edit the f77 and fc lines, this is a spack bug

They should point to the GNU Fortran compiler

$ cat /users/<username>/.spack/linux/compilers.yaml

compilers:

- compiler:

 environment: {}

 extra_rpaths: []

 flags: {}

 modules: []

 operating_system: sles12

 paths:

 cc: /usr/bin/gcc-4.8

 cxx: /usr/bin/g++-4.8

 f77: null

 fc: null

 spec: gcc@4.8

 target: x86_64

Note: If the system where the build is taking place has restricted internet connection

a spack mirror may be necessary. See the Restricted network access solution section

in this document for how to set the mirror up prior to continuing this build scenario.

If needed the following command will direct spack to find the package source

files in the mirror directory.

After executing this command, the spack build will read files from the mirror directory.

$ spack mirror add linux-spack-mirror /home/user/spack-mirror-2018-04-05

Now we are ready to build O|SS using spack on this Cray system

This spack command causes a dependency based build of all the packages that

O|SS depends on to be built. This then causes all the dependencies of

those packages to be built and so on.

$ spack install openspeedshop +cbtf+mpich %gcc@4.8 ^elfutils@0.170

Once the build is completed, one can visit the module file directory to see

the name of the O|SS module file. That will be what you

module load to get access to the O|SS performance tool.

The actual location of the modules is dependent on the machine type name

Below, we change directories to the upper level directory for the module files location

Do an “ls” command to see the name of the sub-directory for the actual location of the module files

$ cd $SPACK_ROOT/share/spack/modules

$ ls

linux-sles12-x86_64

On this platform it is: linux-sles12-x86_64

To use the module file for O|SS, first do a module use

$ module use SPACK_ROOT/share/spack/modules/linux-sles12-x86_64

 49

Then load the openspeedshop-<long name for the module>

In this particular spack build, the O|SS module name is:

openspeedshop-2.3.1-gcc-4.8-t34et3a

$ module load openspeedshop-2.3.1-gcc-4.8-t34et3a

Now one can run O|SS experiments, such as osspcsamp, ossusertime, etc.

The module file load, loads all the necessary runtime and data

viewing bin and library paths and sets up the necessary environment variables.

Convenience cut and paste commands for the above scenario:

mkdir openss_spack

cd openss_spack

git clone https://github.com/spack/spack.git

git checkout -t origin/develop

cd spack

git checkout -t origin/develop

git remote add upstream https://github.com/spack/spack.git

git pull upstream develop

setenv SPACK_ROOT `pwd`

setenv PATH "${SPACK_ROOT}/bin:$PATH"

alias cdpack "cd $SPACK_ROOT/var/spack/repos/builtin/packages"

alias cdmodc "cd $SPACK_ROOT/share/spack/modules/cray-CNL-haswell"

alias cdmodl "cd $SPACK_ROOT/share/spack/modules/linux-sles12-x86_64"

alias cdmod "cd $SPACK_ROOT/share/spack/modules/linux-sles12-x86_64"

alias cdspack "cd $SPACK_ROOT

cat ~/.spack/packages.yaml

packages:

 all:

 providers:

 pkgconfig: [pkg-config]

 elfutils:

 versions: [0.170]

 mpich:

 buildable: False

 paths:

 mpich@7.6.2%gcc@4.8 arch=cray-CNL-haswell: /opt/cray/pe/mpt/7.7.0/gni/mpich-gnu/5.1

module list

spack compiler find

module unload PrgEnv-intel/6.0.4

spack compiler find

cat /users/<username>/.spack/linux/compilers.yaml

spack find

Optional mirror steps

On machine with internet access

spack mirror create -d /home/<username>/spack-mirror –D

openspeedshop+openmpi+mvapich2+mpich%gcc@4.8

spack mirror create -d /home/<username>/spack-mirror –D cbtf-argonavis-gui

tar -cvf spack_mirror.tar /home/<username>/spack-mirror-2018-04-05

gzip spack_mirror-2018-04-05.tar

scp spack_mirror-2018-04-05.tar.gz to build machine

https://github.com/spack/spack.git
https://github.com/spack/spack.git

 50

On build machine without or limited internet access

tar -zxvf spack_mirror-2018-04-05.tar.gz

spack mirror add linux-spack-mirror /home/<username>/spack-mirror-2018-04-05

spack install openspeedshop +cbtf+mpich %gcc@4.8 ^elfutils@0.170

cd $SPACK_ROOT/share/spack/modules/linux-sles12-x86_64

module use SPACK_ROOT/share/spack/modules/ linux-sles12-x86_64

module load openspeedshop-2.3.1-gcc-4.8-t34et3a

Spack Based Heterogeneous O|SS Builds

With the current feature set of spack, in order to build O|SS to run a heterogeneous platform, components

that run on the front-end processor must be built with a separate spack invocation than that of the

components that run on the compute nodes. Therefore, building requires two spack commands, one aimed

at building the front-end components and one aimed at building the compute node components. The

scenario also involves changing modules in order for spack to find the proper compilers. So, for example

if a Cray or other platform truly has processors which can’t share common compiled code across the

compute and front-end process, then one needs to use this scenario build O|SS.

You need to do the steps outlined in the quick start section above before falling into Step 1 and Step 2

detailed below.

First, the compute node components of O|SS must be built using these commands:

Step 1:

Use the compute node GNU compilers

$ module load PrgEnv-gnu

Find compilers to use in the build, use the default on if possible

$ spack compiler find

Install cbtf-krell contains the runtime data collection code that runs on the compute nodes

Note: the %gcc… indicates that this version of the compiler be used in the build process

$ spack install cbtf-krell %gcc@4.8 +runtime+mpich os=CNL

Step 2:

Install the O|SS client tool which will pick up the compute node components in its build

$ spack install openspeedshop +cbtf+mpich %gcc@4.8

Post build steps:

Load the O|SS module file to setup variables and load the runtime components

$ module use <spack module file locaton>

For example: module use ${SPACK_ROOT}/share/spack/modules/linux-sles12-x86_64

$ module load openspeedshop-<module file name, which is build dependent>

For example:

$ module load openspeedshop-2.3-gcc-7.2.0-fxhymxn

